Nov 5, 2016

MtDNA: The small workhorse of evolutionary studies

Frontiers in Bioscience (Landmark Edition)
Rob DesalleHeike Hadrys

Abstract

The double-stranded, circular mitochondrial DNA (mtDNA), which is present in all eukaryotic life forms, was initially discovered and characterized in the last century and has been widely used in evolutionary studies. Since then, a large number of studies have taken advantage of the genetic information encoded in this genome. Because of its small size in animals (in general), the technical ease of manipulating mitochondrial genome and the dynamics of its evolutionary change, this genome has been the workhorse of evolutionary studies over the past three decades. However, the ease with which nuclear DNA can be manipulated due to next generation sequencing (NGS) methods, has recently caused an expected dip in the use of mtDNA in evolutionary studies.  This review examines the future of mitochondrial DNA as a useful tool in studies centered around evolution.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Size
Genome
DNA, Mitochondrial
Genetics, Population
Phylogeny
Mitochondria
Massively-Parallel Sequencing
Genus Homo
Phylogeography

Related Feeds

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.