Sep 1, 2014

Opposing influence of top-down and bottom-up input on different types of excitatory layer 2/3 neurons in mouse visual cortex

Florian HladikIan McGowan


Processing in cortical circuits is driven by combinations of cortical and subcortical inputs. These signals are often conceptually categorized as bottom-up input, conveying sensory information, and top-down input, conveying contextual information. Using intracellular recordings in mouse visual cortex, we measured neuronal responses to visual input, locomotion, and visuomotor mismatches. We show that layer 2/3 (L2/3) neurons compute a difference between top-down motor-related input and bottom-up visual flow input. Most L2/3 neurons responded to visuomotor mismatch with either hyperpolarization or depolarization, and these two response types were associated with distinct physiological properties. Consistent with a subtraction of bottom-up and top-down input, visual and motor-related inputs had opposing influence in L2/3 neurons. In infragranular neurons, we found no evidence of a difference-computation and responses were consistent with a positive integration of visuomotor inputs. Our results provide evidence that L2/3 functions as a bidirectional comparator of top-down and bottom-up input.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Biochemical Pathway
HIV Prevention
Squamous Transitional Epithelial Cell Count
Interleukin 10 Measurement
Anti-Inflammatory Agents
Epithelial Cell Proliferation

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Related Papers

Trends in Cognitive Sciences
H Johansen-Berg
The American Journal of Occupational Therapy : Official Publication of the American Occupational Therapy Association
Gwen Weinstock-Zlotnick, Jim Hinojosa
© 2020 Meta ULC. All rights reserved