DOI: https://doi.org/10.1115/msec2020-8489Jan 15, 2021Proceedings Paper

Multi-Objective Optimization of Wire Electrical Discharge Machined Ultra-Thin Silicon Wafers Using Response Surface Methodology for Solar Cell Applications

Pinal RanaDeepak Marla

Abstract

Recent investigations on the fabrication of ultra-thin silicon (Si) wafers using wire-electrical discharge machining (wire-EDM) were observed to possess some inherent limitations. This includes severe thermal damage, kerf-loss, and low slicing rate, which could be detrimental towards realizing actual practical applications. The extent of thermal damage, kerf-loss, and slicing rate largely depends on the process parameters such as open voltage (OV), servo voltage (SV), and pulse on-time (Ton). Therefore, choosing the optimal parameters that pertain to minimum thermal damage and kerf-loss while maintaining a higher slicing rate is the key to further excel in the fabrication of Si wafers using wire-EDM. Therefore, the present study is an effort to analyze and identify the optimal parameters that relate to the most effective Si slicing in wire-EDM. A central composite design (CCD) based response surface methodology (RSM) was used for optimizing the process parameters. The capability to slice Si wafers in wire-EDM was observed to be highly influenced by the discharge energy, which had a positive impact on the overall responses. The severity of thermal damages was observed to be mainly dominated by the variation in open voltage and T...Continue Reading

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Nuclear Pore Complex in ALS/FTD

Alterations in nucleocytoplasmic transport, controlled by the nuclear pore complex, may be involved in the pathomechanism underlying multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Here is the latest research on the nuclear pore complex in ALS and FTD.

Epigenetics Insights from Twin Studies

Find the latest research on epigenetics and twin studies here.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Microbicide

Microbicides are products that can be applied to vaginal or rectal mucosal surfaces with the goal of preventing, or at least significantly reducing, the transmission of sexually transmitted infections. Here is the latest research on microbicides.

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.

© 2021 Meta ULC. All rights reserved