Oct 1, 2016

Multiplex gene editing by CRISPR-Cpf1 through autonomous processing of a single crRNA array

BioRxiv : the Preprint Server for Biology
Bernd ZetscheFeng Zhang

Abstract

Microbial CRISPR-Cas defense systems have been adapted as a platform for genome editing applications built around the RNA-guided effector nucleases, such as Cas9. We recently reported the characterization of Cpf1, the effector nuclease of a novel type V-A CRISPR system, and demonstrated that it can be adapted for genome editing in mammalian cells. Unlike Cas9, which utilizes a trans-activating crRNA (tracrRNA) as well as the endogenous RNaseIII for maturation of its dual crRNA:tracrRNA guides, guide processing of the Cpf1 system proceeds in the absence of tracrRNA or other Cas (CRISPR associated) genes, suggesting that Cpf1 is sufficient for pre-crRNA maturation. This has important implications for genome editing, as it would provide a simple route to multiplex targeting. Here, we show for two Cpf1 orthologs that no other factors are required for array processing and demonstrate multiplex gene editing in mammalian cells as well as in the mouse brain by using a designed single CRISPR array.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

MRNA Maturation
Genes
CRISPR-Cas Systems
Gene Editing
Brain
Biologic Development
Ear1
Drosha
CNS - Brain (Mmhcc)
Nuclease

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

CRISPR (general)

Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). CRISPR-Cas system enables the editing of genes to create or correct mutations. Discover the latest research on CRISPR here.

CRISPR Ribonucleases Deactivation

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on mechanisms that underlie deactivation of CRISPR ribonucleases. Here is the latest research.

CRISPRi Screens for Antibiotics

The CRISPR-Cas system is a gene editing technique that can be used for high-throughput genome-wide screens to identify modes of actions of novel antibiotics. Here is the latest research.

CRISPR Genome Editing & Therapy (Preprints)

CRISPR-Cas system enables the editing of genes to create or correct mutations. This feed focuses on the application of this system for gene editing and therapy in human diseases.

CRISPR for Genome Editing (Preprints)

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here are the latest preprints on the use of CRISPR-Cas system in gene editing.

CRISPR for Genome Editing

Genome editing technologies enable the editing of genes to create or correct mutations. Clustered regularly interspaced short palindromic repeats (CRISPR) are DNA sequences in the genome that are recognized and cleaved by CRISPR-associated proteins (Cas). Here is the latest research on the use of CRISPR-Cas system in gene editing.