PMID: 5927043Jul 1, 1966

Multiplication and fermentation of Saccharomyces cerevisiae under carbon dioxide pressure in wine

Applied Microbiology
R E Kunkee, C S Ough


Conditions for rapid fermentation of sugar in wine under pressure were sought for use in continuous production of naturally fermented sparkling wine. Wine yeast growth and fermentation were measured under CO(2) pressure. The medium was white wine with added glucose. Pressure was very inhibitory to growth, especially at low pH or high alcohol concentration. Use of various strains of wine yeast, cultures of various ages, or cells adapted to wine did not give more rapid growth. Addition of nutrients increased growth, but under no conditions was growth rapid enough to bring about sufficiently rapid fermentation rates. Conditions for rapid fermentation were sought by use of high levels of cells as inocula. Fermentation rates in wine also were inhibited by pressure, and were dependent on pH and alcohol levels. Addition of nutrients did not increase the fermentation rate, but rapid fermentation rates were obtained, under pressure, by inoculation with high levels of cells adapted several weeks to the base wine. Thus, continuous sparkling-wine production might be practical with proper amounts of adapted cells used as inocula, or perhaps with reuse of the fermentation culture.

Related Concepts

Carbon Dioxide
Glucose, (beta-D)-Isomer
Hydrogen-Ion Concentration

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells. It also follows CRISPR-Cas9 approaches to generating genetic mutants as a means of understanding the effect of genetics on phenotype.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

Pediculosis pubis

Pediculosis pubis is a disease caused by a parasitic insect known as Pthirus pubis, which infests human pubic hair, as well as other areas with hair including eye lashes. Here is the latest research.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Rh Isoimmunization

Rh isoimmunization is a potentially preventable condition that occasionally is associated with significant perinatal morbidity or mortality. Discover the latest research on Rh Isoimmunization here.

Pharmacology of Proteinopathies

This feed focuses on the pharmacology of proteinopathies - diseases in which proteins abnormally aggregate (i.e. Alzheimer’s, Parkinson’s, etc.). Discover the latest research in this field with this feed.

Enzyme Evolution

This feed focuses on molecular models of enzyme evolution and new approaches (such as adaptive laboratory evolution) to metabolic engineering of microorganisms. Here is the latest research.

Alignment-free Sequence Analysis Tools

Alignment-free sequence analyses have been applied to problems ranging from whole-genome phylogeny to the classification of protein families, identification of horizontally transferred genes, and detection of recombined sequences. Here is the latest research.

Related Papers

International Journal of Food Microbiology
Vanessa PenachoRamon Gonzalez
Journal of Industrial Microbiology & Biotechnology
G M Walker, A I Maynard
Microbiología : Publicación De La Sociedad Española De Microbiología
E Bartra
© 2021 Meta ULC. All rights reserved