Oct 29, 2018

Multipoint and large volume fiber photometry with a single tapered optical fiber implant

BioRxiv : the Preprint Server for Biology
Filippo PisanoFerruccio Pisanello

Abstract

Techniques to monitor functional fluorescence signal from the brain are increasingly popular in the neuroscience community. However, most implementations are based on flat cleaved optical fibers (FFs) that can only interface with shallow tissue volumes adjacent to the fiber opening. To circumvent this limitation, we exploit modal properties of tapered optical fibers (TFs) to structure light collection over the wide optically active area of the fiber taper, providing an approach to efficiently and selectively collect light from the region(s) of interest. While being less invasive than FFs, TF probes can uniformly collect light over up to 2 mm of tissue and allow for multisite photometry along the taper. Furthermore, by micro-structuring the non-planar surface of the fiber taper, collection volumes from TFs can also be engineered arbitrarily in both shape and size. Owing to the abilities offered by these probes, we envision that TFs can set a novel, powerful paradigm in optically targeting not only the deep brain, but, more in general, any biological system or organ where light collection from the deep tissues is beneficial but challenging because of tissue scattering and absorption.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Size
Artificial Implants
Brain
Photometry
Organ
Cleaved Cell
Depth
Tissue Fiber
Adjacent
Microbiology Procedure

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.