Multiregion sequencing reveals the genetic correlation of esophageal squamous cell carcinoma and matched cell-free DNA

Zuyang YuanJie He


Background: The aim of this study was to assess whether both ubiquitous and heterogeneous somatic mutations could be detected in circulating cell-free DNA (cfDNA) from patients with esophageal squamous cell carcinoma (ESCC). Methods: Paired multi-regional tumor tissues, cfDNA and white blood cells (WBCs) collected from five ESCC patients before treatment from a prospective study (NCT02395705). Of them, samples from Cohort 1 (E102 and E110) were sequenced by whole-exome sequencing (WES) and those from Cohort 2 (E104, E111 and E121) were sequenced by targeted captured sequencing with a panel of 560 cancer-related genes respectively. To call somatic single nucleotide variations (SNVs) by comparing the solid tumor or cfDNA with matched WBCs, the minimal variant allele frequency (VAFmin) as 0.1% and P value <0.05 were allowed. Results: Genomic DNA (gDNA) and plasma-derived cfDNA from 26 samples were successfully sequenced. In Cohort 1, 596 (596/712, 83%) and 562 (562/796, 71%) were heterogeneous SNVs in E102 and E110 respectively. There was a statistically significant linear relationship between the VAFs for tumor and cfDNA (R2 = 0.78, P <0.0001). In Cohort 2, 296 (296/323, 92%), 384 (384/423, 91%) and 331 (331/357, 93%) were ...Continue Reading

Related Concepts

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.


Blastomycosis fungal infections spread through inhaling Blastomyces dermatitidis spores. Discover the latest research on blastomycosis fungal infections here.

Nuclear Pore Complex in ALS/FTD

Alterations in nucleocytoplasmic transport, controlled by the nuclear pore complex, may be involved in the pathomechanism underlying multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Here is the latest research on the nuclear pore complex in ALS and FTD.

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.


Microbicides are products that can be applied to vaginal or rectal mucosal surfaces with the goal of preventing, or at least significantly reducing, the transmission of sexually transmitted infections. Here is the latest research on microbicides.