May 2, 2003

NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson's disease

Proceedings of the National Academy of Sciences of the United States of America
Du-Chu WuSerge Przedborski

Abstract

Parkinson's disease (PD) is a neurodegenerative disorder of uncertain pathogenesis characterized by a loss of substantia nigra pars compacta (SNpc) dopaminergic (DA) neurons, and can be modeled by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Both inflammatory processes and oxidative stress may contribute to MPTP- and PD-related neurodegeneration. However, whether inflammation may cause oxidative damage in MPTP and PD is unknown. Here we show that NADPH-oxidase, the main reactive oxygen species (ROS)-producing enzyme during inflammation, is up-regulated in SNpc of human PD and MPTP mice. These changes coincide with the local production of ROS, microglial activation, and DA neuronal loss seen after MPTP injections. Mutant mice defective in NADPH-oxidase exhibit less SNpc DA neuronal loss and protein oxidation than their WT littermates after MPTP injections. We show that extracellular ROS are a main determinant in inflammation-mediated DA neurotoxicity in the MPTP model of PD. This study supports a critical role for NADPH-oxidase in the pathogenesis of PD and suggests that targeting this enzyme or enhancing extracellular antioxidants may provide novel therapies for PD.

Mentioned in this Paper

Pars Compacta
Pathogenic Aspects
Pathogenesis
Extracellular
Neurons
Antioxidants
Oxidase
Nerve Degeneration
NADPH Oxidase
Oxidative Stress

Related Feeds

Astrocytes and Neurodegeneration

Astrocytes are important for the health and function of the central nervous system. When these cells stop functioning properly, either through gain of function or loss of homeostatic controls, neurodegenerative diseases can occur. Here is the latest research on astrocytes and neurodegeneration.