Oct 30, 2018

Nanopore sequencing enables high-resolution analysis of resistance determinants and mobile elements in the human gut microbiome

BioRxiv : the Preprint Server for Biology
Denis BertrandNiranjan Nagarajan

Abstract

The analysis of information rich whole-metagenome datasets acquired from complex microbial communities is often restricted by the fragmented nature of assembly from short-read sequencing. The availability of long-reads from third-generation sequencing technologies (e.g. PacBio or Oxford Nanopore) can help improve assembly quality in principle, but high error rates and low throughput have limited their application in metagenomics. In this work, we describe the first hybrid metagenomic assembler which combines the advantages of short and long-read technologies, providing an order of magnitude improvement in contiguity compared to short read assemblies, and high base-pair level accuracy. The proposed approach (OPERA-MS) integrates a novel assembly-based metagenome clustering technique with an exact scaffolding algorithm that can efficiently assemble repeat rich sequences. Based on evaluations with defined in vitro communities and virtual gut microbiomes, we show that it is possible to assemble near complete genomes from metagenomes with as little as 9× long read coverage, thus enabling high quality assembly of lowly abundant species (<1%). Furthermore, OPERA-MS's fine-grained clustering is able to deconvolute and assemble multiple...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Genome
Metagenome
Bacteriophages
Monascin
Nucleic Acid Sequencing
Evaluation
Mass Spectrometry
Sequencing
Microbiome
Microbial

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Bacteriophage: Phage Therapy

Phage therapy uses bacterial viruses (bacteriophages) to treat bacterial infections and is widely being recognized as an alternative to antibiotics. Here is the latest research.

© 2020 Meta ULC. All rights reserved