Apr 11, 2015

Natural selection constrains neutral diversity across a wide range of species

PLoS Biology
Russell B Corbett-DetigTimothy B Sackton

Abstract

The neutral theory of molecular evolution predicts that the amount of neutral polymorphisms within a species will increase proportionally with the census population size (Nc). However, this prediction has not been borne out in practice: while the range of Nc spans many orders of magnitude, levels of genetic diversity within species fall in a comparatively narrow range. Although theoretical arguments have invoked the increased efficacy of natural selection in larger populations to explain this discrepancy, few direct empirical tests of this hypothesis have been conducted. In this work, we provide a direct test of this hypothesis using population genomic data from a wide range of taxonomically diverse species. To do this, we relied on the fact that the impact of natural selection on linked neutral diversity depends on the local recombinational environment. In regions of relatively low recombination, selected variants affect more neutral sites through linkage, and the resulting correlation between recombination and polymorphism allows a quantitative assessment of the magnitude of the impact of selection on linked neutral diversity. By comparing whole genome polymorphism data and genetic maps using a coalescent modeling framework, ...Continue Reading

Mentioned in this Paper

Vertebrates
Genetic Drift
Gene Polymorphism
Setaria italica antigen
Apis mellifera
Sorghum bicolor
Size
CFC1 gene
Abnormal Degeneration
Prunus persica antigen

Related Feeds

Biodiversity Data

Biodiversity refers to the variety and variability of life on Earth. Biodiversity is typically a measure of variation at the genetic, species, and ecosystem level.Discover the latest research on biodiversity data here.