Apr 1, 2020

Fast Cell Parasites Detection with Neural Networks

BioRxiv : the Preprint Server for Biology
X.F XuT. Selvaraja


Deep learning has dramatically improved the performance in many application areas such as image classification, object detection, speech recognition, drug discovery and etc since 2012. Where deep learning algorithms promise to discover the intricate hidden information inside the data by leveraging the large dataset, advanced model and computing power. Although deep learning techniques show medical expert level performance in a lot of medical applications, but some of the applications are still not explored or under explored due to the variation of the species. In this work, we studied the bright field based cell level Cryptosporidium and Giardia detection in the drink water with deep learning. Our experimental demonstrates that the new developed deep learning-based algorithm surpassed the handcrafted SVM based algorithm with above 97 percentage in accuracy and 700+fps in speed on embedded Jetson TX2 platform. Our research will lead to real-time and high accuracy label-free cell level Cryptosporidium and Giardia detection system in the future.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Genome-Wide Association Study
Intolerance Function
Fetal Brain
Genus Hippocampus
Structure of Hippocampal Formation

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.