Networks of neuronal genes affected by common and rare variants in autism spectrum disorders
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders with phenotypic and genetic heterogeneity. Recent studies have reported rare and de novo mutations in ASD, but the allelic architecture of ASD remains unclear. To assess the role of common and rare variations in ASD, we constructed a gene co-expression network based on a widespread survey of gene expression in the human brain. We identified modules associated with specific cell types and processes. By integrating known rare mutations and the results of an ASD genome-wide association study (GWAS), we identified two neuronal modules that are perturbed by both rare and common variations. These modules contain highly connected genes that are involved in synaptic and neuronal plasticity and that are expressed in areas associated with learning and memory and sensory perception. The enrichment of common risk variants was replicated in two additional samples which include both simplex and multiplex families. An analysis of the combined contribution of common variants in the neuronal modules revealed a polygenic component to the risk of ASD. The results of this study point toward contribution of minor and major perturbations in the two sub-networks of neuronal genes to ASD...Continue Reading
References
Mutations in the SHANK2 synaptic scaffolding gene in autism spectrum disorder and mental retardation
Citations
Cell Type-Specific Gene Network-Based Analysis Depicts the Heterogeneity of Autism Spectrum Disorder
Related Concepts
Related Feeds
Autism: Treatment Targets
The absence of effective treatments for autism are due to the high clinical and genetic heterogeneity between affected individuals, restricted knowledge of the underlying pathophysiological mechanisms, and the lack of reliable diagnostic biomarkers. Identification of more homogenous biological subgroups is therefore essential for the development of novel treatments based on the molecular mechanisms underpinning autism and autism spectrum disorders. Find the latest research on autism treatment targets here.
Astrocytes
Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.
Autism
Autism spectrum disorder is associated with challenges with social skills, repetitive behaviors, and often accompanied by sensory sensitivities and medical issues. Here is the latest research.
Astrocytes in Repair & Regeneration
Astrocytes are glial cells found within the CNS and are able to regenerate new neurons. They become activated during CNS injury and disease. The activation leads to the transcription of new genes and the repair and regeneration of neurons. Discover the latest research on astrocytes in repair and regeneration here.