Neural Correlates of the Binaural Masking Level Difference in Human Frequency-Following Responses
Abstract
The binaural masking level difference (BMLD) is an auditory phenomenon where binaural tone-in-noise detection is improved when the phase of either signal or noise is inverted in one of the ears (SπNoor SoNπ, respectively), relative to detection when signal and noise are in identical phase at each ear (SoNo). Processing related to BMLDs and interaural time differences has been confirmed in the auditory brainstem of non-human mammals; in the human auditory brainstem, phase-locked neural responses elicited by BMLD stimuli have not been systematically examined across signal-to-noise ratio. Behavioral and physiological testing was performed in three binaural stimulus conditions: SoNo, SπNo, and SoNπ. BMLDs at 500 Hz were obtained from 14 young, normal-hearing adults (ages 21-26). Physiological BMLDs used the frequency-following response (FFR), a scalp-recorded auditory evoked potential dependent on sustained phase-locked neural activity; FFR tone-in-noise detection thresholds were used to calculate physiological BMLDs. FFR BMLDs were significantly smaller (poorer) than behavioral BMLDs, and FFR BMLDs did not reflect a physiological release from masking, on average. Raw FFR amplitude showed substantial reductions in the SπNocondition...Continue Reading
References
Citations
Related Concepts
Related Feeds
Auditory Perception
Auditory perception is the ability to receive and interpret information attained by the ears. Here is the latest research on factors and underlying mechanisms that influence auditory perception.