Neural Sampling Strategies for Visual Stimulus Reconstruction from Two-photon Imaging of Mouse Primary Visual Cortex

BioRxiv : the Preprint Server for Biology
Stefania GarastoSimon R Schultz

Abstract

Deciphering the neural code involves interpreting the responses of sensory neurons from the perspective of a downstream population. Performing such a read-out is an important step towards understanding how the brain processes sensory information and has implications for Brain-Machine Interfaces. While previous work has focused on classification algorithms to identify a stimulus in a predefined set of categories, few studies have approached a full-stimulus reconstruction task, especially from calcium imaging recordings. Here, we attempt a pixel-by-pixel reconstruction of complex natural stimuli from two-photon calcium imaging of mouse primary visual cortex. We decoded the activity of 103 neurons from layer 2/3 using an optimal linear estimator and investigated which factors drive the reconstruction performance at the pixel level. We find the density of receptive fields to be the most influential feature. Finally, we use the receptive field data and simulations from a linear-nonlinear Poisson model to extrapolate decoding accuracy as a function of network size. We find that, on this dataset, reconstruction performance can increase by more than 50%, provided that the receptive fields are sampled more uniformly in the full visual f...Continue Reading

Related Concepts

Brain
Diagnostic Imaging
Laboratory mice
Neurons
Afferent Neuron
Visual Cortex
Size
Downstream
Reconstructive Surgical Procedures
Brain Function

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.