Apr 28, 2020

A versatile system to introduce clusters of genomic double-strand breaks in large cell populations

BioRxiv : the Preprint Server for Biology
T. KolbAurelie Ernst

Abstract

In vitro assays for clustered DNA lesions will facilitate the analysis of the mechanisms underlying complex genome rearrangements such as chromothripsis, including the recruitment of repair factors to sites of DNA double-strand breaks. We present a novel method generating localized DNA double-strand breaks using UV-irradiation with photomasks. The size of the damage foci and the spacing between lesions are fully adjustable, making the assay suitable for different cell types and targeted areas. We validated this set-up with genomically stable epithelial cells, normal fibroblasts, pluripotent stem cells and patient-derived primary cultures. Our method does not require a specialized device such as a laser, making it accessible to a broad range of users. Sensitization by BrdU incorporation is not required, which enables analyzing the DNA damage response in post-mitotic cells. Irradiated cells can be cultivated further, followed by time-lapse imaging or used for downstream biochemical analyses, thanks to the high-throughput of the system. Importantly, we showed genome rearrangements in the irradiated cells, providing a proof of principle for the induction of structural variants by localized DNA lesions.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Exertion
Decision Making
Prefrontal Cortex
Mesial Premotor Cortex
Magnetic Resonance Imaging
Spinal Muscular Atrophy
Epilepsy, Supplementary Motor
Anterior Cingulate Cortex, Dorsal Part
Brain
Evaluation

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Brain Lower Grade Glioma

Low grade gliomas in the brain form from oligodendrocytes and astrocytes and are the slowest-growing glioma in adults. Discover the latest research on these brain tumors here.