Jan 1, 1997

Neurodegeneration, sleep, and cerebral energy metabolism: a testable hypothesis

Journal of Geriatric Psychiatry and Neurology
M Mamelak

Abstract

Varying degrees of metabolic arrest are used by many living species to survive in a harsh environment. For example, in hibernating mammals, neuronal activity and cerebral metabolism are profoundly depressed in most regions of the brain and limited energy resources are deployed to maintain vital cell functions. Gathering evidence suggests that energy resources are also limited in both Alzheimer's and Parkinson's diseases, and that this promotes metabolic stress and the degenerative process. Key steps in this process are energy requiring, and this further compromises cell energy reserves. It may be possible to slow the progress of these diseases by inducing slow-wave sleep (SWS) at night with gammahydroxybutyrate. Patients with these diseases sleep poorly and generate little SWS. SWS and hibernation are thought to be on a continuum of energy conservation. Thus, the induction of SWS may retard the degenerative process by depressing cell metabolism and by directing energy utilization to vital cell functions. In this way, GHB-induced SWS may duplicate the effects of hibernation and extend biologic time.

  • References28
  • Citations10

Citations

Mentioned in this Paper

Senile Paranoid Dementia
Familial Alzheimer Disease (FAD)
Slow Virus Diseases
Energy Metabolism
Brain
Nerve Degeneration
Somsanit
Sleep Stages
Parkinson Disease
Infantile Neuroaxonal Dystrophy

About this Paper

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Head And Neck Squamous Cell Carcinoma

Squamous cell carcinomas account for >90% of all tumors in the head and neck region. Head and neck squamous cell carcinoma incidence has increased dramatically recently with little improvement in patient outcomes. Here is the latest research on this aggressive malignancy.

Signaling in Adult Neurogenesis

Neural stem cells play a critical role in the production of neuronal cells in neurogenesis is of great importance. Of interest is the role signalling mechanisms in adult neurogenesis. Discover the latest research on signalling in adult neurogenesis.

Psychiatric Chronotherapy

Psychiatric Chronotherapy considers the circadian rhythm as a major factor for optimizing therapeutic efficacy of psychiatric interventions. Discover the latest research on Psychiatric Chronotherapy here.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.