Neuronal Population Models Reveal Specific Linear Conductance Controllers Sufficient to Rescue Preclinical Disease Phenotypes

BioRxiv : the Preprint Server for Biology
Sushmita L AllamJ. Kozloski


Objective: During the preclinical phase of drug development, potential drug candidates are often screened for their ability to alleviate certain in vitro electrophysiological features among neurons. This ability is assessed by measuring treatment outcomes using the population mean, both across different cells and different animals. The go/no-go decision for progressing a drug to a clinical trial is then based on average effects, yet these measures may not be sufficient to mitigate clinical end point risk. Population-based modeling is widely used to represent the intrinsic variability of electrophysiological features among healthy, disease and drug treated neuronal phenotypes. We pursued a method for optimizing therapeutic target design by identifying a single coherent set of ion channel targets for recovery of the healthy (Wild type) cellular phenotype simultaneously across multiple measures. Specifically, we aimed to determine the set of target modulations that best recover a heterogeneous Huntington's disease (HD) population of model neurons into a multivariate region of phenotypic measurements corresponding to the healthy excitability profile of a heterogenous Wild type (WT) population of model neurons. Methods: Our approach...Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.