Jul 21, 2015

Neuroprotective Effects of Direct Intrathecal Administration of Granulocyte Colony-Stimulating Factor in Rats with Spinal Cord Injury

CNS Neuroscience & Therapeutics
Wu-Fu ChenZhi-Hong Wen

Abstract

To date, no reliable methods have proven effective for treating spinal cord injury (SCI). Even systemic administration of methylprednisolone (MP) remains controversial. We previously reported that intrathecal (i.t.) administration of granulocyte colony-stimulating factor (G-CSF) improves outcome after experimental spinal cord ischemic insults in rats. The present study aimed to examine the neuroprotective efficacy of i.t. G-CSF or MP in rats with SCI. Female rats were subjected to spinal cord contusion injury at T10 using NYU impactor. We i.t. administered G-CSF (10 μg) or MP (one bolus of 100 μg, followed by 18 μg/h infusion for 23 h) immediately after SCI. Both G-CSF and MP significantly improved the rats' motor function after SCI. Immunofluorescence staining revealed suppressed expression of transforming growth factor-beta 1 (TGF-β1), chondroitin sulfate proteoglycans (neurocan and phosphacan), OX-42 and tumor necrosis factor alpha after i.t. G-CSF, but not MP, in rats with SCI. In addition, G-CSF significantly decreased the expression of astrocytic TGF-β1 and glial fibrillary acidic protein around the injury site. Furthermore, rats with G-CSF treatment showed increased neurofilament expression beyond the glial scars. Direct...Continue Reading

Mentioned in this Paper

Filgrastim
Post-Traumatic Myelopathy
Guanosine
Ischemia
Study
Spinal Diseases
Immunofluorescence Assay
Granulocyte Colony-stimulating Factor Binding
Necrosis
Chondroitin Sulfate Proteoglycans

Related Feeds

CSF & Lymphatic System

This feed focuses on Cerebral Spinal Fluid (CSF) and the lymphatic system. Discover the latest papers using imaging techniques to track CSF outflow into the lymphatic system in animal models.

Astrocytes

Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.

Astrocytes in Repair & Regeneration

Astrocytes are glial cells found within the CNS and are able to regenerate new neurons. They become activated during CNS injury and disease. The activation leads to the transcription of new genes and the repair and regeneration of neurons. Discover the latest research on astrocytes in repair and regeneration here.