Nov 29, 2014

Node Detection using High-Dimensional Fuzzy Parcellation Applied to the Insular Cortex

BioRxiv : the Preprint Server for Biology
Ugo VercelliFranco Cauda

Abstract

Several functional connectivity approaches require the definition of a set of ROIs that act as network nodes. Different methods have been developed to define these nodes and to derive their functional and effective connections, most of which are rather complex. Here we aim to propose a relatively simple “one-step” border detection and ROI estimation procedure employing the fuzzy c-mean clustering algorithm. To test this procedure and to explore insular connectivity beyond the two/three-region model currently proposed in the literature, we parcellated the insular cortex of a group of twenty healthy right-handed volunteers (10 females) scanned in a resting state condition. Employing a high-dimensional functional connectivity-based clustering process, we confirmed the two patterns of connectivity previously described. This method revealed a complex pattern of functional connectivity where the two previously detected insular clusters are subdivided into several other networks, some of which not commonly associated with the insular cortex, such as the default mode network and parts of the dorsal attentional network. Finally, the detection of nodes was reliable as demonstrated by the confirmative analysis performed on a replication...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Biological Neural Networks
Patterns
2-Dimensional
Human Volunteers
Research Subject
Definition
Virus Replication
One-Step Dentin Bonding System
Evaluation Procedure
Literature

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.