May 11, 2011

Nonlinear gene cluster analysis with labeling for microarray gene expression data in organ development

BMC Proceedings
Martin EhlerRobert F Bonner

Abstract

The gene networks underlying closure of the optic fissure during vertebrate eye development are not well-understood. We use a novel clustering method based on nonlinear dimension reduction with data labeling to analyze microarray data from laser capture microdissected (LCM) cells at the site and developmental stages (days 10.5 to 12.5) of optic fissure closure. Our nonlinear methods created clusters of genes that mapped onto more specific biological processes and functions related to eye development as defined by Gene Ontology at lower false discovery rates than conventional linear cluster algorithms. Our new methods build on the advantages of LCM to isolate pure phenotypic populations within complex tissues in order to identify systems biology relationships among critical gene products expressed at lower copy number. The combination of LCM of embryonic organs, gene expression microarrays, and nonlinear dimension reduction with labeling is a potentially useful approach to extract subtle spatial and temporal co-variations within the gene regulatory networks that specify mammalian organogenesis and organ function. Our results motivate further analysis of nonlinear dimension reduction with labeling within other microarray data set...Continue Reading

  • References16
  • Citations6

References

  • References16
  • Citations6

Mentioned in this Paper

Vertebrates
Embryo
Fissure
Eye Morphogenesis
Genome
Entire Retina
CDH4 gene
Transcription, Genetic
Candidate Disease Gene
Retinal Diseases

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Synthetic Genetic Array Analysis

Synthetic genetic arrays allow the systematic examination of genetic interactions. Here is the latest research focusing on synthetic genetic arrays and their analyses.

Autism: Motor Learning

A common feature of autism spectrum disorder (ASD) is the impairment of motor control and learning, consistent with perturbation in cerebellar function. Find the latest research on ASD and motor learning here.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Sexual Dimorphism in Neurodegeneration

There exist sex differences in neurodevelopmental and neurodegenerative disorders. For instance, multiple sclerosis is more common in women, whereas Parkinson’s disease is more common in men. Here is the latest research on sexual dimorphism in neurodegeneration

Protein Localization in Disease & Therapy

Localization of proteins is critical for ensuring the correct location for physiological functioning. If an error occurs, diseases such as cardiovascular, neurodegenerative disorders and cancers can present. Therapies are being explored to target this mislocalization. Here is the latest research on protein localization in disease and therapy.

Genetic Screens in Bacteria

Genetic screens can provide important information on gene function as well as the molecular events that underlie a biological process or pathway. Here is the latest research on genetic screens in bacteria.

Head And Neck Squamous Cell Carcinoma

Squamous cell carcinomas account for >90% of all tumors in the head and neck region. Head and neck squamous cell carcinoma incidence has increased dramatically recently with little improvement in patient outcomes. Here is the latest research on this aggressive malignancy.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.