Novel analysis of drug-drug interactions reveals the appearance of non-linear dose dependence under the single drug treatment

BioRxiv : the Preprint Server for Biology
Y-h. Taguchi, T. Turki

Abstract

The accurate prediction of new interactions between drugs is important for avoiding unknown (mild or severe) adverse reactions to drug combinations. The development of effective in silico methods for evaluating drug interactions based on gene expression data requires an understanding of how various drugs alter gene expression. Current computational methods for the prediction of drug-drug interactions (DDIs) utilize data for known DDIs to predict unknown interactions. However, these methods are limited in the absence of known predictive DDIs. To improve DDIs' interpretation, a recent study has demonstrated strong non-linear (i.e., dose-dependent) effects of DDIs. In this study, we present a new unsupervised learning approach involving tensor decomposition (TD)-based unsupervised feature extraction (FE) in 3D. We utilize our approach to reanalyze available gene expression profiles for Saccharomyces cerevisiae. We found that non-linearity is possible, even for single drugs. Thus, non-linear dose-dependence cannot always be attributed to DDIs. Our analysis provides a basis for the design of effective methods for evaluating DDIs.

Related Concepts

Environment
Adaptation
Gambling, Pathological
Genotype Determination
Genetic Models for Cancer
Population Group

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Addiction

This feed focuses mechanisms underlying addiction and addictive behaviour including heroin and opium dependence, alcohol intoxication, gambling, and tobacco addiction.

© 2020 Meta ULC. All rights reserved