Nuclear protein 1 imparts oncogenic potential and chemotherapeutic resistance in cancer.

Cancer Letters
Anthony Murphy, Max Costa

Abstract

Nuclear protein 1 (NUPR1) also known as p8 and candidate of metastasis 1 (COM1) functions as a transcriptional regulator, and plays a role in cell cycle, DNA damage response, apoptosis, autophagy, and chromatin remodeling in response to various cellular stressors. Since it was first suggested to contribute to cancer development and progression in 1999, a number of studies have sought to reveal its function. However, NUPR1 and its biological relevance in cancer have proven difficult to pinpoint. Based on evidence of NUPR1 expression in cancers, its function extends from carcinogenesis and tumorigenesis to metastasis and chemotherapeutic resistance. A tumor suppressive function of NUPR1 has also been documented in multiple cancers. By and large, literature involving NUPR1 and cancer is confined to pancreatic and breast cancers, yet significant progress has been made with respect to NUPR1 expression and its function in lung, colorectal, blood, and prostate cancers, among others. Recent evidence strongly supports the notion that NUPR1 is key in chemotherapeutic resistance by mediating both anti-apoptotic activity and autophagy when challenged with anti-cancer compounds. Therefore, it is of significant importance to understand the b...Continue Reading

Citations

Nov 17, 2020·Frontiers in Oncology·Jose G Alvarez-MeythalerMatilde E LLeonart
Jul 28, 2021·Cancer Letters·Giuseppa AugelloMelchiorre Cervello
Aug 8, 2021·Cancers·Can HuangJuan Iovanna

❮ Previous
Next ❯

Related Concepts

Related Feeds

Cancer Epigenetics Chromatin Complexes (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. This feed focuses on chromatin complexes and their role in cancer epigenetics.

Autophagy & Metabolism

Autophagy preserves the health of cells and tissues by replacing outdated and damaged cellular components with fresh ones. In starvation, it provides an internal source of nutrients for energy generation and, thus, survival. A powerful promoter of metabolic homeostasis at both the cellular and whole-animal level, autophagy prevents degenerative diseases. It does have a downside, however--cancer cells exploit it to survive in nutrient-poor tumors.

Autophagy & Model Organisms

Autophagy is a cellular process that allows degradation by the lysosome of cytoplasmic components such as proteins or organelles. Here is the latest research on autophagy & model organisms

Apoptosis in Cancer

Apoptosis is an important mechanism in cancer. By evading apoptosis, tumors can continue to grow without regulation and metastasize systemically. Many therapies are evaluating the use of pro-apoptotic activation to eliminate cancer growth. Here is the latest research on apoptosis in cancer.

Parkinson's Disease & Autophagy (MDS)

Autophagy leads to degradation of damaged proteins and organelles by the lysosome. Impaired autophagy has been implicated in several diseases. Here is the role of autophagy in Parkinson’s disease.

Apoptosis

Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

Autophagy & Disease

Autophagy is an important cellular process for normal physiology and both elevated and decreased levels of autophagy are associated with disease. Here is the latest research.

Cancer Epigenetics and Chromatin (Keystone)

Epigenetic changes are present and dysregulated in many cancers, including DNA methylation, non-coding RNA segments and post-translational protein modifications. The epigenetic changes may or may not provide advantages for the cancer cells. This feed focuses on chromatin and its role in cancer epigenetics please follow this feed to learn more.

Cell Cycle Pathways

Cell cycle is a complex process regulated by several signal transduction pathways and enzymes. Here is the latest research on regulation of cell cycle and cell cycle pathways.