Aug 20, 2019

Nutrient depletion may trigger the Yersinia pestis OmpR-EnvZ regulatory system to promote flea-borne plague transmission

Molecular Microbiology
Sébastien Bontemps-GalloFlorent Sebbane

Abstract

The flea's lumen gut is a poorly documented environment where the agent of flea-borne plague, Yersinia pestis, must replicate to produce a transmissible infection. Here, we report that both the acidic pH and osmolarity of the lumen's contents display simple harmonic oscillations with different periods. Since an acidic pH and osmolarity are two of three known stimuli of the OmpR-EnvZ two-component system in bacteria, we investigated the role and function of this Y. pestis system in fleas. By monitoring the in vivo expression pattern of three OmpR-EnvZ-regulated genes, we concluded that the flea gut environment triggers OmpR-EnvZ. This activation was not, however, correlated with changes in pH and osmolarity but matched the pattern of nutrient depletion (the third known stimulus for OmpR-EnvZ). Lastly, we found that the OmpR-EnvZ and the OmpF porin are needed to produce the biofilm that ultimately obstructs the flea's gut and thus hastens the flea-borne transmission of plague. Taken as a whole, our data suggest that the flea gut is a complex, fluctuating environment in which Y. pestis senses nutrient depletion via OmpR-EnvZ. Once activated, the latter triggers a molecular program (including at least OmpF) that produces the biofil...Continue Reading

Mentioned in this Paper

In Vivo
Environment
Nutrients
Plague
Genes, Regulator
Yersinia
Porin
OmpF protein
Pharmacologic Substance
Monitoring - Action

Related Feeds

Biofilm & Infectious Disease

Biofilm formation is a key virulence factor for a wide range of microorganisms that cause chronic infections.Here is the latest research on biofilm and infectious diseases.

Biofilms

Biofilms are adherent bacterial communities embedded in a polymer matrix and can cause persistent human infections that are highly resistant to antibiotics. Discover the latest research on Biofilms here.

Bacterial Respiration

This feed focuses on cellular respiration in bacteria, known as bacterial respiration. Discover the latest research here.