Nov 4, 2018

On the adaptive behavior of head-fixed flies navigating in two-dimensional, visual virtual reality

BioRxiv : the Preprint Server for Biology
Hannah HaberkernVivek Jayaraman

Abstract

A navigating animal's sensory experience is shaped not just by its surroundings, but by its movements within them, which in turn are influenced by its past experiences. Studying the intertwined roles of sensation, experience and directed action in navigation has been made easier by the development of virtual reality (VR) environments for head-fixed animals, which allow for quantitative measurements of behavior in well-controlled sensory conditions. VR has long featured in studies of Drosophila melanogaster, but these experiments have typically relied on one-dimensional (1D) VR, effectively allowing the fly to change only its heading in a visual scene, and not its position. Here we explore how flies navigate in a two-dimensional (2D) visual VR environment that more closely resembles their experience during free behavior. We show that flies' interaction with landmarks in 2D environments cannot be automatically derived from their behavior in simpler 1D environments. Using a novel paradigm, we then demonstrate that flies in 2D VR adapt their behavior in a visual environment in response to optogenetically delivered appetitive and aversive stimuli. Much like free-walking flies after encounters with food, head-fixed flies respond to o...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Study
Positioning Attribute
2-Dimensional
Food
Neurons
Brain
Environment
Experience
Head Neoplasms
Diptera

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Basal Forebrain & Food Avoidance

Neurons in the basal forebrain play specific roles in regulating feeding. Here are the latest discoveries pertaining to the basal forebrain and food avoidance.

© 2020 Meta ULC. All rights reserved