On the dynamics of the adenylate energy system: homeorhesis vs homeostasis
Abstract
Biochemical energy is the fundamental element that maintains both the adequate turnover of the biomolecular structures and the functional metabolic viability of unicellular organisms. The levels of ATP, ADP and AMP reflect roughly the energetic status of the cell, and a precise ratio relating them was proposed by Atkinson as the adenylate energy charge (AEC). Under growth-phase conditions, cells maintain the AEC within narrow physiological values, despite extremely large fluctuations in the adenine nucleotides concentration. Intensive experimental studies have shown that these AEC values are preserved in a wide variety of organisms, both eukaryotes and prokaryotes. Here, to understand some of the functional elements involved in the cellular energy status, we present a computational model conformed by some key essential parts of the adenylate energy system. Specifically, we have considered (I) the main synthesis process of ATP from ADP, (II) the main catalyzed phosphotransfer reaction for interconversion of ATP, ADP and AMP, (III) the enzymatic hydrolysis of ATP yielding ADP, and (IV) the enzymatic hydrolysis of ATP providing AMP. This leads to a dynamic metabolic model (with the form of a delayed differential system) in which t...Continue Reading
References
Citations
An engineered enzyme that targets circulating lactate to alleviate intracellular NADH:NAD+ imbalance
Related Concepts
Related Feeds
ATP Synthases
ATP synthases are enzymes located in the inner mitochondrial membrane that catalyze the synthesis of ATP during cellular respiration. Discover the latest research on ATP synthases here.
Calcium & Bioenergetics
Bioenergetic processes, including cellular respiration and photosynthesis, concern the transformation of energy by cells. Here is the latest research on the role of calcium in bioenergetics.