Apr 25, 2020

Control of ribosomal protein synthesis by Microprocessor complex

BioRxiv : the Preprint Server for Biology
X. JiangAkiko Hata


Ribosome biogenesis in eukaryotes requires stoichiometric production and assembly of 80 ribosomal proteins (RPs) and 4 ribosomal RNAs, and its rate must be coordinated with cellular growth. The indispensable regulator of RP biosynthesis is the 5'-terminal oligopyrimidine (TOP) motif, spanning the transcription start site of all RP genes. Here we show that the Microprocessor complex, previously linked to the first step of processing microRNAs (miRNAs), coregulates RP expression by binding the TOP motif of nascent RP mRNAs and stimulating transcription elongation via resolution of DNA/RNA hybrids. Cell growth arrest triggers nuclear export and degradation of the Microprocessor protein Drosha by the E3 ubiquitin ligase Nedd4, accumulation of DNA/RNA hybrids at RP gene loci, decreased RP synthesis, and ribosome deficiency, hence synchronizing ribosome production with cell growth. Conditional deletion of Drosha in erythroid progenitors phenocopies human ribosomopathies, in which ribosomal insufficiency leads to anemia. Outlining a miRNA-independent role of the Microprocessor complex at the interphase between cell growth and ribosome biogenesis offers a new paradigm by which cells alter their protein biosynthetic capacity and cellula...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Cortex Bone Disorders
Adrenal Cortex Diseases
Theoretical Model
Globus Pallidus
Injection Procedure
Entire Basal Nuclei
Objective (Goal)
Psychological Reinforcement

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Basal Ganglia

Basal Ganglia are a group of subcortical nuclei in the brain associated with control of voluntary motor movements, procedural and habit learning, emotion, and cognition. Here is the latest research.

Related Papers

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
Michel Desmurget, Robert S Turner
Handbook of Clinical Neurology
Barbara J Knowlton, Daniel L Greenberg
© 2020 Meta ULC. All rights reserved