DOI: https://doi.org/10.1115/gt2020-15481Jan 15, 2021Proceedings Paper

Optimization of Airfoil Blend Limits With As-Manufactured Geometry Finite Element Models

Emily B. CarperJoeseph A. Beck

Abstract

Conventional airfoil blend repair limits are established using nominal, design intent geometry. This convention does not explicitly consider the inherent blade-to-blade structural response variation associated with geometric manufacturing deviations. In this work, we explore whether accounting for these variations leads to significant differences in blend depths and develop a novel approach to effectively predict blade-specific blend allowables. These blade-specific values maximize the part repairability according to their proximity to defined structural integrity constraints. The methodology is demonstrated on the as-manufactured geometry of an aerodynamic research rig compressor rotor. Geometric point cloud data of this rotor is used to construct as-built finite element models (FEMs) of each airfoil. The effect of two large blends on these airfoils demonstrates the opportunity of blade-specific blend limits. A new approach to determine each airfoil’s blend repair capacity is developed that uses sequential least squares quadratic programming and a parametric blended blade FEM that accounts for manufacturing geometry variations and variable blend geometry. A mesh morphing algorithm modifies a nominal geometry model to match the...Continue Reading

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Nuclear Pore Complex in ALS/FTD

Alterations in nucleocytoplasmic transport, controlled by the nuclear pore complex, may be involved in the pathomechanism underlying multiple neurodegenerative diseases including Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Here is the latest research on the nuclear pore complex in ALS and FTD.

Epigenetics Insights from Twin Studies

Find the latest research on epigenetics and twin studies here.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Microbicide

Microbicides are products that can be applied to vaginal or rectal mucosal surfaces with the goal of preventing, or at least significantly reducing, the transmission of sexually transmitted infections. Here is the latest research on microbicides.

Applications of Molecular Barcoding

The concept of molecular barcoding is that each original DNA or RNA molecule is attached to a unique sequence barcode. Sequence reads having different barcodes represent different original molecules, while sequence reads having the same barcode are results of PCR duplication from one original molecule. Discover the latest research on molecular barcoding here.

Regulation of Vocal-Motor Plasticity

Dopaminergic projections to the basal ganglia and nucleus accumbens shape the learning and plasticity of motivated behaviors across species including the regulation of vocal-motor plasticity and performance in songbirds. Discover the latest research on the regulation of vocal-motor plasticity here.

Myocardial Stunning

Myocardial stunning is a mechanical dysfunction that persists after reperfusion of previously ischemic tissue in the absence of irreversible damage including myocardial necrosis. Here is the latest research.

© 2021 Meta ULC. All rights reserved