Jul 28, 2006

Optimized design and synthesis of chemical dimerizer substrates for detection of glycosynthase activity via chemical complementation

Bioorganic & Medicinal Chemistry
Haiyan TaoVirginia W Cornish

Abstract

Glycosynthases catalyze the formation of a glycosidic bond between a glycosyl fluoride donor substrate and a glycosyl acceptor substrate with high yield, thus providing a valuable approach for the synthesis of carbohydrates and glycoconjugates. Chemical complementation can be used to link glycosynthase activity to the transcription of a reporter gene in vivo, providing a selection for the directed evolution of glycosynthase enzymes with improved properties. In this approach, glycosynthase activity is detected as covalent coupling between a small molecule disaccharide acceptor substrate and a small molecule disaccharide alpha-fluoro donor substrate. Here we report the optimized design and synthesis of these small molecule substrates. These optimized substrates are shown to give a robust, glycosynthase-dependent transcriptional read-out in the chemical complementation assay. The full synthesis and characterization of these substrates are reported for the first time. These optimized chemical dimerizer substrates should allow the potential of chemical complementation for the directed evolution of glycosynthases with diverse substrate specificities and improved properties to be fully realized.

  • References2
  • Citations6

References

Mentioned in this Paper

Directed Evolution
Tryptophan
Carbohydrate nutrients
Pyridines
Covalent Interaction
Galactose Measurement
Hyrex Brand of Dimenhydrinate
Histidine
Fluoride Measurement
DLEU2 wt Allele

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.