Jan 14, 2000

Overexpression, purification, and partial characterization of ADP-ribosyltransferases modA and modB of bacteriophage T4

Gene Expression
B TiemannW Rüger


There is increasing experimental evidence that ADP-ribosylation of host proteins is an important means to regulate gene expression of bacteriophage T4. Surprisingly, this phage codes for three different ADP-ribosyltransferases, gene products Alt, ModA, and ModB, modifying partially overlapping sets of host proteins. While gene product Alt already has been isolated as a recombinant protein and its action on host RNA polymerases and transcription regulation have been studied, the nucleotide sequences of the two mod genes was published only recently. Their mode of action in the course of the infection cycle and the consequences of the ADP-ribosylations catalyzed by these enzymes remain to be investigated. Here we describe the cloning of the genes, the overexpression, purification, and partial characterization of ADP-ribosyltransferases ModA and ModB. Both proteins seem to act independently, and the ADP-ribosyl moieties are transferred to different sets of host proteins. While gene product ModA, similarly to the Alt protein, acts also on the alpha-subunit of host RNA polymerase, the ModB activity serves another set of proteins, one of which was identified as the S1 protein associated with the 30S subunit of the E. coli ribosomes.

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Transcriptional Regulation
Enzymes, antithrombotic
DNA-Directed RNA Polymerase
RNA Polymerase Assembly Pathway
Gene Expression
Oligonucleotide Primers
Enzymes for Treatment of Wounds and Ulcers

About this Paper

Related Feeds

Bacteriophage: Phage Therapy

Phage therapy uses bacterial viruses (bacteriophages) to treat bacterial infections and is widely being recognized as an alternative to antibiotics. Here is the latest research.