DOI: 10.1101/452912Oct 25, 2018Paper

Oxidation-induced destabilization of the fibrinogen α-domain dimer investigated by molecular dynamics simulations

BioRxiv : the Preprint Server for Biology
Eric N Pederson, Gianluca Interlandi

Abstract

Upon activation, fibrinogen is converted to insoluble fibrin, which assembles into long strings called protofibrils. These aggregate laterally to form a fibrin matrix that stabilizes a blood clot. Lateral aggregation of protofibrils is mediated by the αC domain, a partially structured fragment located in a disordered region of fibrinogen. Polymerization of αC domains links multiple fibrin molecules with each other enabling the formation of thick fibrin fibers and a fibrin matrix that is stable but can also be digested by enzymes. However, oxidizing agents produced during the inflammatory response have been shown to cause thinner fibrin fibers resulting in denser clots, which are harder to proteolyze and pose the risk of deep vein thrombosis and lung embolism. It has been postulated that oxidation of Met476 located within the αC domain hinders its ability to polymerize disrupting the lateral aggregation of protofibrils and leading to the observed thinner fibers. How αC domains assemble into polymers is still unclear and yet this knowledge would shed light on the mechanism through which oxidation weakens the lateral aggregation of protofibrils. This study used temperature replica exchange molecular dynamics simulations to investi...Continue Reading

Related Concepts

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Blood Clotting Disorders

Thrombophilia includes conditions with increased tendency for excessive blood clotting. Blood clotting occurs when the body has insufficient amounts of specialized proteins that make blood clot and stop bleeding. Here is the latest research on blood clotting disorders.