DOI: 10.1101/494484Dec 16, 2018Paper

Oxytocin involves in chronic stress-evoked melanoma metastasis via β-arrestin 2 mediated-pathways

BioRxiv : the Preprint Server for Biology
Haoyi JiJingxin Li

Abstract

Stress is associated with an increased risk of lung metastasis in melanoma. However, the underlying mechanism is elusive. Oxytocin (OXT), a neurohormone produced by the hypothalamus, plays a vital role in laboring induction and lactation. Emerging evidence suggests that OXT also regulates human emotions, social cognition, social behaviors and stress-related disorders. Here, we reported that a significant up-regulation of oxytocin receptors (OXTRs) was observed in malignant melanoma. The activation of oxytocin receptors (OXTRs) dramatically promoted migration, invasion and angiogenesis but not the proliferation of melanoma cells in vitro and in vivo via β-arrestin 2-dependent ERK-VEGF/ MMP-2 pathway. Next, chronic restraint stress significantly elevated the plasma level of OXT. Notably, 21 days chronic restraint stress facilitated lung metastasis of melanoma and reduced overall survival in mice, which were largely abrogated by knocking down either OXTR or β-arrestin 2. These findings provide evidence that chronic stress hormone-OXT promotes lung metastasis of melanoma via a β-arrestin 2-dependent mechanism and suggest that OXT, a novel pro-metastasis factor, is a potential therapeutic target for melanoma.

Related Concepts

Cognition
Emotions
Hypothalamic Structure
Melanoma
Laboratory mice
Oxytocin
Plasma
Up-Regulation (Physiology)
Oxytocin Receptor
Secondary Malignant Neoplasm of Lung

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Cell Migration

Cell migration is involved in a variety of physiological and pathological processes such as embryonic development, cancer metastasis, blood vessel formation and remoulding, tissue regeneration, immune surveillance and inflammation. Here is the latest research.