Feb 28, 2020

Parkin coordinates mitochondrial lipid remodeling to execute mitophagy

bioRxiv
Chao-Chieh LinTso-Pang Yao

Abstract

Mitochondrial failure caused by Parkin mutations contributes to Parkinson′s disease. Parkin binds, ubiquitinates, and targets impaired mitochondria for autophagic destruction. Robust mitophagy involves peri-nuclear concentration of Parkin-tagged mitochondria, followed by dissemination of juxtanuclear mitochondrial aggregates, and efficient sequestration of individualized mitochondria by autophagosomes. Here, we report that the execution of complex mitophagic events requires active mitochondrial lipid remodeling. Parkin recruits phospholipase D2 to the depolarized mitochondria and generate phosphatidic acid (PA). Mitochondrial PA is subsequently converted to diacylglycerol (DAG) by Lipin-1 phosphatase- a process that further requires mitochondrial ubiquitination and ubiquitin-binding autophagic receptors, NDP52 and Optineurin. We show that Optineurin transports, via Golgi-derived vesicles, a PA-binding factor EndoB1 to ubiquitinated mitochondria, thereby facilitating DAG production. Mitochondrial DAG activates both F-actin assembly to drive mitochondrial individualization, and autophagosome biogenesis to efficiently restrict impaired mitochondria. Thus Parkin, autophagic receptors and the Golgi complex orchestrate mitochondrial ...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Golgi Vesicle
Molecular Probe Techniques
Mitochondria
Parkinson Disease
F-Actin
Phospholipase D2
Mitochondrial Inheritance
Disseminated
Protein-lipid Complex Remodeling
LPIN1

Related Feeds

Autophagy: Cancer & Parkinson (MDS)

Autophagy leads to degradation of damaged proteins and organelles by the lysosome. Impaired autophagy has been implicated in several diseases. Here is the role of autophagy in cancer and Parkinson’s.

Autophagy & Model Organisms

Autophagy is a cellular process that allows degradation by the lysosome of cytoplasmic components such as proteins or organelles. Here is the latest research on autophagy & model organisms

Autophagosome

An autophagosome is the formation of double-membrane vesicles that involve numerous proteins and cytoplasmic components. These double-membrane vesicles are then terminated at the lysosome where they are degraded. Discover the latest research on autophagosomes here.

Autophagosome

An autophagosome is the formation of double-membrane vesicles that involve numerous proteins and cytoplasmic components. These double-membrane vesicles are then terminated at the lysosome where they are degraded. Discover the latest research on autophagosomes here.

Autophagy Networks

Autophagy is a lysosomal pathway that involves degradation of proteins and functions in normal growth and pathological conditions, through a series of complex networks. The catabolic process involves delivery of proteins and organelles to the lysosome. Here is the latest research on autophagy networks.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

Autophagy: Cancer & Parkinson

Autophagy leads to degradation of damaged proteins and organelles by the lysosome. Impaired autophagy has been implicated in several diseases. Here is the role of autophagy in cancer and Parkinson’s.