Passage of Salmonella through the crop and gizzard of broiler chickens fed with fermented liquid feed

Avian Pathology : Journal of the W.V.P.A
L HeresB A Urlings

Abstract

In vivo experiments were conducted in order to investigate the passage and bacterial reduction of Salmonella in the crop and gizzard of chickens when fed two different feeds. The chickens were fed dry conventional feed and fermented liquid feed. The fermented feed contains a relatively high concentration of lactic and acetic acid and lactobacilli. One and three week old broiler chickens were necropsied at short intervals after inoculation with Salmonella Enteritidis. Counts of Salmonella from the crop, gizzard, duodenum, caecum and colon/rectum were obtained. This revealed a sharper decrease of Salmonella in the anterior parts of the gastro-intestinal tract in chickens fed with fermented feed than in chickens fed dry feed. It is therefore concluded that fermented feed improves the barrier formed by the crop and gizzard. The reduction of Salmonella is fully realised in the crop and gizzard. The lower intestinal compartment did not show a substantial effect on the reduction of Salmonella. The performed in vivo method appeared to be an appropriate way to study intervention strategies that aim to control Salmonella by improving the barrier function of the upper gastro-intestinal tract.

Related Concepts

Animal Feed (Substance)
Avian Crop
Fermentation
Gizzard
Hydrogen-Ion Concentration
Intestines
Poultry Diseases
Randomization
Salmonella enteritidis
Salmonella Infections, Animal

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Evolution of Pluripotency

Pluripotency refers to the ability of a cell to develop into three primary germ cell layers of the embryo. This feed focuses on the mechanisms that underlie the evolution of pluripotency. Here is the latest research.

Lipidomics & Rhinovirus Infection

Lipidomics can be used to examine the lipid species involved with pathogenic conditions, such as viral associated inflammation. Discovered the latest research on Lipidomics & Rhinovirus Infection.

Glut1 Deficiency

Glut1 deficiency, an autosomal dominant, genetic metabolic disorder associated with a deficiency of GLUT1, the protein that transports glucose across the blood brain barrier, is characterized by mental and motor developmental delays and infantile seizures. Follow the latest research on Glut1 deficiency with this feed.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Alzheimer's Disease: MS4A

Variants within the membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease in genome-wide association studies. Here is the latest research on Alzheimer's disease and MS4A.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

Laryngeal Neoplasms

Laryngeal Neoplasms occur in the Larynx and are typically associated with smoking and alcohol consumption. Discover the latest research on Laryngeal Neoplasms here.

Cell Atlas Along the Gut-Brain Axis

Profiling cells along the gut-brain axis at the single cell level will provide unique information for each cell type, a three-dimensional map of how cell types work together to form tissues, and insights into how changes in the map underlie health and disease of the GI system and its crosstalk with the brain. Disocver the latest research on single cell analysis of the gut-brain axis here.