PMID: 6124531Aug 1, 1982

Periplasmic enzymes in Bdellovibrio bacteriovorus and Bdellovibrio stolpii

Journal of Bacteriology
D A OdelsonR B Hespell

Abstract

When cells of either Bdellovibrio bacteriovorus 109J or Bdellovibrio stolpii UKi2 were subjected to osmotic shock by treatment with sucrose-EDTA and MgCl2 solutions, only trace amounts of proteins or enzyme activities were released into the shock fluid. In contrast, when nongrowing cells were converted to motile, osmotically stable, peptidoglycan-free spheroplasts by penicillin treatment, numerous proteins were released into the suspending fluid. For both species, this suspending fluid contained substantial levels of 5'-nucleotidase, purine phosphorylase, and deoxyribose-phosphate aldolase. Penicillin treatment also released aminoendopeptidase N from B. bacteriovorus, but not from B. stolpii. Penicillin treatment did not cause release of cytoplasmic enzymes such as malate dehydrogenase. The data indicated that bdellovibrios possess periplasmic enzymes or peripheral enzymes associated with the cell wall complex. During intraperiplasmic bdellovibrio growth, periplasmic and cytoplasmic enzymes of the Escherichia coli substrate cell were not released upon formation of the spherical bdelloplast during bdellovibrio penetration. Most of the E. coli enzymes were retained within the bdelloplast until later in the growth cycle, when they...Continue Reading

Related Concepts

Deoxyribose-phosphate aldolase
Aldehyde-Lyases
Aminopeptidase
Bdellovibrio
Plasma Membrane
Cell Wall
Alkalescens-Dispar Group
Nucleotidases
Osmotic Stress
Van-Pen-G

Related Feeds

Bacterial Cell Wall Structure

Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by unusual peptides containing D-amino acids. Here is the latest research on bacterial cell wall structures.

Bacterial Cell Wall Structure (ASM)

Bacterial cell walls are made of peptidoglycan (also called murein), which is made from polysaccharide chains cross-linked by unusual peptides containing D-amino acids. Here is the latest research on bacterial cell wall structures.