PMID: 43132Nov 1, 1979

Peroxide oxidation of indole to oxindole by chloroperoxidase catalysis

The Biochemical Journal
M D Corbett, B R Chipko

Abstract

In the presence of chloroperoxidase, indole was oxidized by H2O2 to give oxindole as the major product. Under most conditions oxindole was the only product formed, and under optimal conditions the conversion was quantitative. This reaction displayed maximal activity at pH 4.6, although appreciable activity was observed throughout the entire pH range investigated, namely pH 2.5-6.0. Enzyme saturation by indole could not be demonstrated, up to the limit of indole solubility in the buffer. The oxidation kinetics were first-order with respect to indole up to 8 mM, which was the highest concentration of indole that could be investigated. On the other hand, 2-methylindole was not affected by H2O2 and chloroperoxidase, but was a strong inhibitor of indole oxidation. The isomer 1-methylindole was a poor substrate for chloroperoxidase oxidation, and a weak inhibitor of indole oxidation. These results suggest the possibility that chloroperoxidase oxidation of the carbon atom adjacent to the nitrogen atom in part results from hydrogen-bonding of the substrate N-H group to the enzyme active site.

References

Aug 15, 2012·Proceedings of the National Academy of Sciences of the United States of America·Hsin H Kuo, A Grant Mauk
Jun 21, 1983·Biochemistry·K RamakrishnanJ Fisher
Feb 11, 2003·The Journal of Biological Chemistry·Xianwen YiLowell P Hager
Dec 15, 1986·FEBS Letters·W WiesnerF Lingens

Related Concepts

Ovoperoxidase
Hydrogen Peroxide
1-methylindole
Oxidation
High Pressure Liquid Chromatography Procedure
Oxindole
Catalysis
Indoles
Oxydol
Oxidation-Reduction

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.