Nov 6, 2018

PETISCO is a novel protein complex required for 21U RNA biogenesis and embryonic viability

BioRxiv : the Preprint Server for Biology
Ricardo J Cordeiro RodriguesRene Ketting

Abstract

Piwi proteins are important for germ cell development in almost all animals studied thus far. These proteins are guided to specific targets, such as transposable elements, by small guide RNAs, often referred to as piRNAs, or 21U RNAs in C. elegans. In this organism, even though genetic screens have uncovered a number of potential 21U RNA biogenesis factors, little is known about how these factors interact or what they do. Based on the previously identified 21U biogenesis factor PID-1, we here define a novel protein complex, PETISCO, that is required for 21U RNA biogenesis. PETISCO contains both potential 5'-cap and 5'-phosphate RNA binding domains, suggesting involvement in 5' end processing. We define the interaction architecture of PETISCO and reveal a second function for PETISCO in embryonic development. This essential function of PETISCO is not mediated by PID-1, but by TOST-1. Vice versa, TOST-1 is not involved in 21U RNA biogenesis. Both PID-1 and TOST-1 are small, intrinsically disordered proteins that interact directly with the PETISCO protein ERH-2 (enhancer of rudimentary homolog 2) using a conserved sequence motif. Finally, our data suggest an important role for TOST-1:PETISCO in SL1 homeostasis in the early embryo. ...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Calcinus elegans
Embryo
Cyartonema elegans
Coleonyx elegans
Biochemical Pathway
Conserved Sequence
Small Nuclear RNA
AN 1
Cestrum elegans
PIWIL1 gene

About this Paper

Related Feeds

CREs: Gene & Cell Therapy

Gene and cell therapy advances have shown promising outcomes for several diseases. The role of cis-regulatory elements (CREs) is crucial in the design of gene therapy vectors. Here is the latest research on CREs in gene and cell therapy.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.