Oct 21, 1985

Pharmacological studies on stress-induced renin and prolactin secretion: effects of benzodiazepines, naloxone, propranolol and diisopropyl fluorophosphate

Brain Research
L D Van de KarCynthia L Bethea

Abstract

Stress-induced renin and prolactin secretion was investigated using a conditioned emotional response paradigm. Three minutes after placement in a chamber the rats received an electric shock to their feet via the grid floor, then were immediately returned to their home cage. This procedure was repeated for 3 consecutive days. On the fourth day, instead of receiving an electric shock, they were removed after 3 min and sacrificed by decapitation. Control rats were treated identically with the exception that shock was not administered at any time. There was a significant increase in plasma renin activity and prolactin level in the stressed rats. The administration of the antianxiety drugs chlordiazepoxide (10 mg/kg i.p.) or midazolam (0.125-2 mg/kg i.p.) blocked the stress-induced increase in prolactin levels but not the stress-induced rise in plasma renin activity. Administration of the beta-blocker propranolol (1 mg/kg i.p.) inhibited, but did not completely block, stress-induced rise in plasma-renin activity and had no effect on stress-induced prolactin secretion. The opiate antagonist naloxone (0.1-10 mg/kg i.p.) and the acetylcholinesterase inhibitor diisopropyl fluorophosphate (0.5 mg/kg i.p.) did not block stress-induced ren...Continue Reading

Mentioned in this Paper

Acetylcholinesterase Inhibitors
Naloxone
Floropryl
Isoflurophate
Ache
Ren
August Rats
Mental Suffering
Benzodiazepine [EPC]
PRL gene

About this Paper

Related Feeds

Adrenergic Receptors: Trafficking

Adrenergic receptor trafficking is an active physiological process where adrenergic receptors are relocated from one region of the cell to another or from one type of cell to another. Discover the latest research on adrenergic receptor trafficking here.