Oct 18, 2019

Phenotypic Suppression of ALS/FTD-Associated Neurodegeneration Highlights Mechanisms of Dysfunction

The Journal of Neuroscience : the Official Journal of the Society for Neuroscience
Mathieu BartolettiKristi A Wharton

Abstract

A fundamental question regarding the etiology of amyotrophic lateral sclerosis (ALS) is whether the various gene mutations associated with the disease converge on a single molecular pathway or act through multiple pathways to trigger neurodegeneration. Notably, several of the genes and cellular processes implicated in ALS have also been linked to frontotemporal dementia (FTD), suggesting these two diseases share common origins with varied clinical presentations. Scientists are rapidly identifying ALS/FTD suppressors that act on conserved pathways from invertebrates to vertebrates to alleviate degeneration. The elucidation of such genetic modifiers provides insight into the molecular pathways underlying this rapidly progressing neurodegenerative disease, while also revealing new targets for therapeutic development.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Vertebrates
Biochemical Pathway
Cellular Process
Genes
Nerve Degeneration
Gene Mutation
Amyotrophic Lateral Sclerosis
Frontotemporal Dementia
Scientist
Invertebrates

Related Feeds

ALS: Therapies

Amyotrophic Lateral Sclerosis (ALS), also known as motor neuron disease, is associated with the death of neurons that control voluntary muscles. Discover the latest research on ALS therapies here.

ALS

Amyotrophic Lateral Sclerosis (ALS), also known as motor neuron disease, is associated with the death of neurons that control voluntary muscles. Discover the latest research on ALS here.

ALS - Phenotypes

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder characterized by muscle weakness. Here is the latest research investigating phenotypes associated with this genetically heterogeneous disorder.