Sep 9, 2011

Phosphatidylinositol-3-kinase (PI3K) is activated by influenza virus vRNA via the pathogen pattern receptor Rig-I to promote efficient type I interferon production

Cellular Microbiology
Eike R HrinciusChristina Ehrhardt

Abstract

The phosphatidylinositol-3-kinase (PI3K) was identified to be activated upon influenza A virus (IAV) infection. An early and transient induction of PI3K signalling is caused by viral attachment to cells and promotes virus entry. In later phases of infection the kinase is activated by the viral NS1 protein to prevent premature apoptosis. Besides these virus supporting functions, it was suggested that PI3K signalling is involved in dsRNA and IAV induced antiviral responses by enhancing the activity of interferon regulatory factor-3 (IRF-3). However, molecular mechanisms of activation remained obscure. Here we show that accumulation of vRNA in cells infected with influenza A or B viruses results in PI3K activation. Furthermore, expression of the RNA receptors Rig-I and MDA5 was increased upon stimulation with virion extracted vRNA or IAV infection. Using siRNA approaches, Rig-I was identified as pathogen receptor necessary for influenza virus vRNA sensing and subsequent PI3K activation in a TRIM25 and MAVS signalling dependent manner. Rig-I induced PI3K signalling was further shown to be essential for complete IRF-3 activation and consequently induction of the type I interferon response. These data identify PI3K as factor that is ...Continue Reading

Mentioned in this Paper

Transfection
Herpesvirus 1, Cercopithecine
Gene Knockdown Techniques
RNA, Small Interfering
Pathogenic Organism
RNA, Double-Stranded
DDX58 protein, human
Virion
Virus Replication
Influenza

Related Feeds

AKT Pathway

This feed focuses on the AKT serine/threonine kinase, which is an important signaling pathway involved in processes such as glucose metabolism and cell survival.

Apoptosis

Apoptosis is a specific process that leads to programmed cell death through the activation of an evolutionary conserved intracellular pathway leading to pathognomic cellular changes distinct from cellular necrosis

Antivirals

Antivirals are medications that are used specifically for treating viral infections. Discover the latest research on antivirals here.

Antivirals (ASM)

Antivirals are medications that are used specifically for treating viral infections. Discover the latest research on antivirals here.