May 10, 1976

Physical and kinetic properties of homogenous bovine lens aldose reductase

The Journal of Biological Chemistry
C M Sheaff, C C Doughty


Aldose reductase from calf lens was purified 15,000-fold. The homogeneity of the final preparation was demonstrated by molecular sieve chromatography, analytical ultracentrifugation, sodium dodecyl sulfate gel electrophoresis, Ouchterlony immunodiffusion, and polyacrylamide gel electrophoresis at three pH values. The monomeric nature of the enzyme is suggested by the molecular weight of 37,000 from both molecular sieve chromatography and sodium dodecyl sulfate-gel electrophoresis with beta-mercaptoethanol. This closely corresponds with a molecular weight of 40,400 estimated by using calculate physical constants in the Svedberg equation. The S20,w was 3.6 to 3.7 as determined from ultracentrifuge and sucrose density gradient data. The Stokes radius was found to be 2.5 +/- 0.2 nm and 2.75 +/- 0.15 nm by two different methods. The diffusion constant D20,w is (7.8 +/- 10(-7) +/- 0.45 X 10(-7) cm2/s). The molecule is nearly spherical as indicated by a frictional ratio f/fo = 1.14. The alpha-helical content was estimated from circular dichroism data to be 5% and did not change in the presence of added substrates, products, and some enzyme inhibitors. Homotropic cooperative effects were observed as shown by the concave downward curvat...Continue Reading

  • References
  • Citations


  • We're still populating references for this paper, please check back later.
  • References
  • Citations


  • This paper may not have been cited yet.

Mentioned in this Paper

Analytical Ultracentrifugation
Structure of Calf of Leg
Enzyme Inhibitor Drugs
Alcohol Oxidoreductases
Cattle calf (organism)
Bos taurus
Xylose Reductase
Infrared Spectrophotometry

About this Paper

Related Feeds

ASBMB Publications

The American Society for Biochemistry and Molecular Biology (ASBMB) includes the Journal of Biological Chemistry, Molecular & Cellular Proteomics, and the Journal of Lipid Research. Discover the latest research from ASBMB here.