Feb 13, 2001

Physiologic concentrations of bile salts inhibit rat hepatic alkaline phosphatase but not the intestinal isoenzyme

Clinical Biochemistry
M J MartinsI Azevedo


The effect of bile salts on alkaline phosphatase (EC activity from Wistar rat liver, duodenum, jejunum, and serum was investigated. For concentrations higher than 1 mM conjugated bile salts (glycocholate, glycochenodeoxycholate, taurocholate, taurodeoxycholate, and taurochenodeoxycholate) inhibited hepatic ALP but, up to concentrations of 10 mM, had no effect on intestinal ALP. Also cholate, deoxycholate, and chenodeoxycholate, within the same concentration range, did not have any effect on intestinal ALP. ALP inhibition induced by conjugated bile salts was significantly higher in serum of starved rats than in serum of fed animals, what is in good agreement with the known higher proportion of hepatic ALP and lower proportion of intestinal ALP in serum of starved rats. Bile salts can, thus, be used to help discriminating between tissue-nonspecific and intestinal ALP isoenzymes and identifying pathologic conditions where the relative quantities of these isoenzymes are altered in serum. Inhibition of hepatic ALP by physiologic concentrations of bile salts may bear some relation to the bile salts effects on their own enterohepatic circulation and/or biosynthesis.

Mentioned in this Paper

Bile Acid Measurement
Malignant Neoplasm of Jejunum
Alkaline Phosphatase Measurement
Alkaline Phosphatase
Glycine Chenodeoxycholate
Entire Jejunum
Entire Duodenum

About this Paper

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.

© 2020 Meta ULC. All rights reserved