Oct 31, 2018

Physiological genomics of dietary adaptation in a marine herbivorous fish

BioRxiv : the Preprint Server for Biology
Joseph HerasDonovan German

Abstract

Adopting a new diet is a significant evolutionary change and can profoundly affect an animal's physiology, biochemistry, ecology, and its genome. To study this evolutionary transition, we investigated the physiology and genomics of digestion of a derived herbivorous fish, the monkeyface prickleback (Cebidichthys violaceus). We sequenced and assembled its genome and digestive transcriptome and revealed the molecular changes related to important dietary enzymes, finding abundant evidence for adaptation at the molecular level. In this species, two gene families experienced expansion in copy number and adaptive amino acid substitutions. These families, amylase, and bile salt activated lipase, are involved digestion of carbohydrates and lipids, respectively. Both show elevated levels of gene expression and increased enzyme activity. Because carbohydrates are abundant in the prickleback's diet and lipids are rare, these findings suggest that such dietary specialization involves both exploiting abundant resources and scavenging rare ones, especially essential nutrients, like essential fatty acids.

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Carbohydrate nutrients
Bile Acid Measurement
Diet
Genome
Genes
Enzymes, antithrombotic
Cebidichthys violaceus
Nutrients
Gene Expression
Leptostichaeus pumilus

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.