May 2, 2015

Plasmid partitioning systems of conjugative plasmids from Clostridium perfringens

Plasmid
Vicki AdamsJulian I Rood

Abstract

Many pathogenic strains of Clostridium perfringens carry several highly similar toxin or antibiotic resistance plasmids that have 35 to 40 kb of very closely related syntenous sequences, including regions that carry the genes encoding conjugative transfer, plasmid replication and plasmid maintenance functions. Key questions are how are these closely related plasmids stably maintained in the same cell and what is the basis for plasmid incompatibility in C. perfringens. Comparative analysis of the Rep proteins encoded by these plasmids suggested that this protein was not the basis for plasmid incompatibility since plasmids carried in a single strain often encoded an almost identical Rep protein. These plasmids all carried a similar, but not identical, parMRC plasmid partitioning locus. Phylogenetic analysis of the deduced ParM proteins revealed that these proteins could be divided into ten separate groups. Importantly, in every strain that carried more than one of these plasmids, the respective ParM proteins were from different phylogenetic groups. Similar observations were made from the analysis of phylogenetic trees of the ParR proteins and the parC loci. These findings provide evidence that the basis for plasmid incompatibilit...Continue Reading

Mentioned in this Paper

Tetracycline Antibiotics
Tetracyclines
CCL18 gene
Genes
Trees (plant)
Adenosine Triphosphatases
Toxin
Patient Transfer
Toxins, Chimeric
Thylacodes aureus

Trending Feeds

COVID-19

Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Bone Marrow Neoplasms

Bone Marrow Neoplasms are cancers that occur in the bone marrow. Discover the latest research on Bone Marrow Neoplasms here.

IGA Glomerulonephritis

IgA glomerulonephritis is a chronic form of glomerulonephritis characterized by deposits of predominantly Iimmunoglobin A in the mesangial area. Discover the latest research on IgA glomerulonephritis here.

Cryogenic Electron Microscopy

Cryogenic electron microscopy (Cryo-EM) allows the determination of biological macromolecules and their assemblies at a near-atomic resolution. Here is the latest research.

STING Receptor Agonists

Stimulator of IFN genes (STING) are a group of transmembrane proteins that are involved in the induction of type I interferon that is important in the innate immune response. The stimulation of STING has been an active area of research in the treatment of cancer and infectious diseases. Here is the latest research on STING receptor agonists.

LRRK2 & Immunity During Infection

Mutations in the LRRK2 gene are a risk-factor for developing Parkinson’s disease. However, LRRK2 has been shown to function as a central regulator of vesicular trafficking, infection, immunity, and inflammation. Here is the latest research on the role of this kinase on immunity during infection.

Antiphospholipid Syndrome

Antiphospholipid syndrome or antiphospholipid antibody syndrome (APS or APLS), is an autoimmune, hypercoagulable state caused by the presence of antibodies directed against phospholipids.

Meningococcal Myelitis

Meningococcal myelitis is characterized by inflammation and myelin damage to the meninges and spinal cord. Discover the latest research on meningococcal myelitis here.

Alzheimer's Disease: MS4A

Variants within membrane-spanning 4-domains subfamily A (MS4A) gene cluster have recently been implicated in Alzheimer's disease by recent genome-wide association studies. Here is the latest research.