Nov 28, 2012

Plasmodium falciparum antigen 332 is a resident peripheral membrane protein of Maurer's clefts

PloS One
Sandra NilssonKirsten Moll

Abstract

During the intraerythrocytic development of Plasmodium falciparum, the malaria parasite remodels the host cell cytosol by inducing membranous structures termed Maurer's clefts and inserting parasite proteins into the red blood cell cytoskeleton and plasma membrane. Pf332 is the largest known asexual malaria antigen that is exported into the red blood cell cytosol where it associates with Maurer's clefts. In the current work, we have utilized a set of different biochemical assays to analyze the solubility of the endogenous Pf332 molecule during its trafficking from the endoplasmic reticulum within the parasite to the host cell cytosol. Solubilization studies demonstrate that Pf332 is synthesized and trafficked within the parasite as a peripheral membrane protein, which after export into the host cell cytosol associates with the cytoplasmic side of Maurer's clefts in a peripheral manner. By immunofluorescence microscopy and flow cytometry, we show that Pf332 persists in close association with Maurer's clefts throughout trophozoite maturation and schizogony, and does not become exposed at the host cell surface. Our data also indicate that Pf332 interacts with the host cell cytoskeleton, but only in very mature parasite stages. Thu...Continue Reading

Mentioned in this Paper

Pathologic Cytolysis
REXO1 gene
Establishment and Maintenance of Localization
Saponin
Muscle Rigidity
Pathogenic Aspects
Flow Cytometry
Host-Parasite Interactions
Ethanol
REXO2 gene

Related Feeds

Antimalarial Agents

Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.

Antimalarial Agents (ASM)

Antimalarial agents, also known as antimalarials, are designed to prevent or cure malaria. Discover the latest research on antimalarial agents here.