Plum is a novel regulator of synaptic function and muscle size in D. melanogaster

BioRxiv : the Preprint Server for Biology
Hrvoje AugustinLinda Partridge

Abstract

Mammalian Myostatin (MST) and GDF11, members of the TGF-β superfamily of growth factors, are powerful regulators of muscle size in both model organisms and humans. Myoglianin (MYO), the Drosophila homolog of MST and GDF11, is a strong inhibitor of synaptic function and structure at the neuromuscular junction (NMJ), and a negative regulator of body weight and muscle size and function in flies. Here, we identified Plum, a cell surface immunoglobulin homologous to mammalian developmental regulators Protogenin and Nope, as a modulator of MYO function in the larval neuromuscular system. Reduction of Plum specifically in the larval body-wall muscles abolishes the previously demonstrated positive effect of attenuated MYO signalling on both muscle size and neuromuscular junction structure and function, likely by de-sequestrating the remaining MYO. In addition, downregulation of Plum on its own results in decreased synaptic strength and body weight, classifying Plum as a (novel) regulator of neuromuscular function and body (muscle) size. These findings offer new insights into possible regulatory mechanisms behind ageing- and disease-related neuromuscular dysfunctions in humans and identify potential targets for therapeutic interventions.

Related Concepts

Classification
Diptera
Down-Regulation
Drosophila
Drosophila melanogaster
Immunoglobulin G
Muscle
Synaptic Transmission
Neuromuscular Junction
Physiological Aspects

Related Feeds

Cell Aging (Preprints)

This feed focuses on cellular aging with emphasis on the mitochondria, autophagy, and metabolic processes associated with aging and longevity. Here is the latest research on cell aging.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.