Pluripotent Stem Cell-derived Cerebral Organoids Reveal Human Oligodendrogenesis with Dorsal and Ventral Origins

BioRxiv : the Preprint Server for Biology
Hyosung KimPeng Jiang

Abstract

The process of oligodendrogenesis has been relatively well delineated in the rodent brain. However, it remains unknown whether analogous developmental processes are manifested in the human brain. Here, we report oligodendrogenesis in forebrain organoids, generated by using OLIG2-GFP knockin human pluripotent stem cell (hPSC) reporter lines. OLIG2/GFP exhibits distinct temporal expression patterns in ventral forebrain organoids (VFOs) vs. dorsal forebrain organoids (DFOs). Interestingly, oligodendrogenesis can be induced in both VFOs and DFOs after neuronal maturation. Assembling VFOs and DFOs to generate fused forebrain organoids (FFOs) promotes oligodendroglia maturation. Furthermore, dorsally-derived oligodendroglial cells outcompete ventrally-derived oligodendroglia and become dominant in FFOs after long-term culture. Thus, our organoid models reveal human oligodendrogenesis with ventral and dorsal origins. These models will serve to study the phenotypic and functional differences between human ventrally- and dorsally-derived oligodendroglia and to reveal mechanisms of diseases associated with cortical myelin defects.

Related Concepts

Brain
Cerebral Cortex
Oligodendroglia
Organoids
Rodent
Dorsal
Laboratory Culture
Pluripotent Stem Cells
MRNA Maturation
Protein Expression

Related Feeds

Brain Organoids in Disease Modeling

Brain organoids are three-dimensional cell culture models derived from human pluripotent stem cells. Since they resemble the embryonic brain, they can be used to help study brain biology, early brain development, and brain diseases. Discover the latest research on brain organoids in disease modeling here.

Barrel cortex

Here is the latest research on barrel cortex, a region of somatosensory and motor corticies in the brain, which are used by animals that rely on whiskers for world exploration.

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.

3D Cellular Models of Brain and Neurodegeneration

Brain organoids are three-dimensional in vitro cellular models of the brain that can recapitulate many processes such as the neurodevelopment. In addition, these organoids can be combined with other cell types, such as neurons and astrocytes to study their interactions in assembloids. Disease processes can also be modeled by induced pluripotent stem cell-derived organoids and assembloids from patients with neurodegenerative disorders. Discover the latest research on the models here.

Astrocytes

Astrocytes are glial cells that support the blood-brain barrier, facilitate neurotransmission, provide nutrients to neurons, and help repair damaged nervous tissues. Here is the latest research.