Aug 8, 2002

Polyribosomes redistribute from dendritic shafts into spines with enlarged synapses during LTP in developing rat hippocampal slices

Neuron
Linnaea OstroffKristen M Harris

Abstract

The presence of polyribosomes in dendritic spines suggests a potential involvement of local protein synthesis in the modification of synapses. Dendritic spine and synapse ultrastructure were compared after low-frequency control or tetanic stimulation in hippocampal slices from postnatal day (P)15 rats. The percentage of spines containing polyribosomes increased from 12% +/- 4% after control stimulation to 39% +/- 4% after tetanic stimulation, with a commensurate loss of polyribosomes from dendritic shafts at 2 hr posttetanus. Postsynaptic densities on spines containing polyribosomes were larger after tetanic stimulation. Local protein synthesis might therefore serve to stabilize stimulation-induced growth of the postsynaptic density. Furthermore, coincident polyribosomes and synapse enlargement might indicate spines that are expressing long-term potentiation induced by tetanic stimulation.

Mentioned in this Paper

Polyribosomes
Presynaptic Terminals
Set of Polysomal Ribosomes
Organ Culture Techniques
Synaptic Transmission
Protein Biosynthesis
Cell Differentiation Process
Cell Compartmentation
Synapses
Electron Microscopy

Related Feeds

Brain developing: Influences & Outcomes

This feed focuses on influences that affect the developing brain including genetics, fetal development, prenatal care, and gene-environment interactions. Here is the latest research in this field.

Cell Adhesion Molecules in the Brain

Cell adhesion molecules found on cell surface help cells bind with other cells or the extracellular matrix to maintain structure and function. Here is the latest research on their role in the brain.