Mar 23, 2016

Population heterogeneity in mutation rate increases mean fitness and the frequency of higher order mutants

BioRxiv : the Preprint Server for Biology
Helen AlexanderSebastian Bonhoeffer

Abstract

Mutation rate is a crucial evolutionary parameter that has typically been treated as a constant in population genetic analyses. However, mutation rate is likely to vary among co-existing individuals within a population, due to genetic polymorphisms, heterogeneous environmental influences, and random physiological fluctuations. We explore the consequences of such mutation rate heterogeneity in a model allowing an arbitrary distribution of mutation rate among individuals, either with or without inheritance. We find that variation of mutation rate about the mean results in a higher probability of producing zero or many simultaneous mutations on a genome. Moreover, it increases the frequency of higher order mutants even under ongoing mutation and selection. We gain a quantitative understanding of how this frequency depends on moments of the mutation rate distribution and selection coefficients. In particular, in a two-locus model, heterogeneity leads to a relative increase in double mutant frequency proportional to the squared coefficient of variation of the mutation rate. Relative effect sizes increase with the number of loci. Finally, this clustering of deleterious mutations into fewer individuals results in a higher population m...Continue Reading

  • References
  • Citations

References

  • We're still populating references for this paper, please check back later.
  • References
  • Citations

Citations

  • This paper may not have been cited yet.

Mentioned in this Paper

Gene Polymorphism
Fluctuation
Genome
Environment
Mutant Proteins
Genetic Inheritance
Adaptation
Standing Position
Mutant
Analysis

About this Paper

Related Feeds

BioRxiv & MedRxiv Preprints

BioRxiv and MedRxiv are the preprint servers for biology and health sciences respectively, operated by Cold Spring Harbor Laboratory. Here are the latest preprint articles (which are not peer-reviewed) from BioRxiv and MedRxiv.