PMID: 39983Sep 1, 1979

Postnatal rat sympathetic neurons in culture. I. A comparison with embryonic neurons

Journal of Neurophysiology
E WakshullH Burton


1. A morphological and physiological comparison was made between embryonically and postnatally derived superior cervical ganglion neurons (SCGN) grown in dissociated cell culture. It was found that while morphologically distinct, the physiological properties of the postnatal neurons were the same as their embryonic counterparts. 2. Intracellular injection of horseradish peroxidase (HPR) demonstrated that SCGN from any age of animal elaborated two basic types of processes, although the pattern of process ramification was unique for each neuron. The two types of proceses were 1) the large, smooth, rapidly tapering; and 2) the thin, nontapering variety, which often contained varicosities along its length. It is suggested that the former are dendritic in function, while the latter act as axons. 3. A difference was noted in somal size and the number of primary processes extended by the embryonic and postnatal neurons, with the latter more closely resembling the in vivo morphology. 4. Resting potentials and action-potential amplitudes of postnatal SCGN were comparable to those found previously for embryonic SCGN in vitro. 5. Iontophoretic application of putative neurotransmitter substances revealed the presence of acetylcholine recep...Continue Reading


Jan 1, 1986·Annals of the New York Academy of Sciences·S T Brady, M M Black
Apr 9, 1999·Nature Neuroscience·J M IlardiZ H Sheng
May 1, 1988·Pflügers Archiv : European journal of physiology·G G Schofield, S R Ikeda
May 1, 1991·Visual Neuroscience·A T Ishida, M H Cheng

Related Concepts

Depression, Postpartum
Science of Morphology
Resting Potentials
Cell Culture Techniques
Synaptic Transmission

Trending Feeds


Coronaviruses encompass a large family of viruses that cause the common cold as well as more serious diseases, such as the ongoing outbreak of coronavirus disease 2019 (COVID-19; formally known as 2019-nCoV). Coronaviruses can spread from animals to humans; symptoms include fever, cough, shortness of breath, and breathing difficulties; in more severe cases, infection can lead to death. This feed covers recent research on COVID-19.

Chronic Fatigue Syndrome

Chronic fatigue syndrome is a disease characterized by unexplained disabling fatigue; the pathology of which is incompletely understood. Discover the latest research on chronic fatigue syndrome here.

Synapse Loss as Therapeutic Target in MS

As we age, the number of synapses present in the human brain starts to decline, but in neurodegenerative diseases this occurs at an accelerated rate. In MS, it has been shown that there is a reduction in synaptic density, which presents a potential target for treatment. Here is the latest research on synapse loss as a therapeutic target in MS.

Artificial Intelligence in Cardiac Imaging

Artificial intelligence (ai) techniques are increasingly applied to cardiovascular (cv) medicine in cardiac imaging analysis. Here is the latest research.

Position Effect Variegation

Position Effect Variagation occurs when a gene is inactivated due to its positioning near heterochromatic regions within a chromosome. Discover the latest research on Position Effect Variagation here.

Social Learning

Social learning involves learning new behaviors through observation, imitation and modeling. Follow this feed to stay up to date on the latest research.

Cell Atlas of the Human Eye

Constructing a cell atlas of the human eye will require transcriptomic and histologic analysis over the lifespan. This understanding will aid in the study of development and disease. Find the latest research pertaining to the Cell Atlas of the Human Eye here.

Single Cell Chromatin Profiling

Techniques like ATAC-seq and CUT&Tag have the potential to allow single cell profiling of chromatin accessibility, histones, and TFs. This will provide novel insight into cellular heterogeneity and cell states. Discover the latest research on single cell chromatin profiling here.

Genetic Screens in iPSC-derived Brain Cells

Genetic screening is a critical tool that can be employed to define and understand gene function and interaction. This feed focuses on genetic screens conducted using induced pluripotent stem cell (iPSC)-derived brain cells.