Sep 26, 2009

Potentiation of neurotoxicity of Lathyrus sativus by manganese: alterations in blood-brain barrier permeability

Toxicology Mechanisms and Methods
Geeta MishraMukul Das

Abstract

Environmental factors have been speculated to play an important role in potentiating the neurotoxicity of Lathyrus sativus (LS). Hence, blood-brain barrier permeability and neurotoxicity studies were carried out in manganese- and LS-exposed animals. Dietary feeding of LS (80%) plus Mn (0.4 mg/100 g diet) for 90 days to guinea pigs showed significant (p < 0.05) decrease in brain nucleotidase and ATPase activities when compared to control or LS alone treated groups. Combined treatment of LS and Mn showed a significant (p < 0.05) decrease in neuronal aryl hydrocarbon hydroxylase (36-40%), ethoxyresorufin-O-deethylase (40-45%), glutathione-S-transferase (27-31%), and quinone reductase (24-25%) activities when compared to control and LS alone treated animals. Lipid peroxidation, a marker for membrane damage, was found to be relatively more enhanced (58-141%) along with significant (p < 0.05) depletion of GSH levels in LS+Mn-treated animals when compared to control, Mn alone, and LS alone treated groups. The neuronal catalase activity of lathyrus plus Mn-treated animals showed a pronounced decrease (37-49%) when compared to control, Mn, and lathyrus alone treated groups. On the contrary, glutathione peroxidase in brain of Mn and lath...Continue Reading

  • References42
  • Citations3

References

  • References42
  • Citations3

Citations

Mentioned in this Paper

Ovoperoxidase
Lathyrus
Manganese
Blood - Brain Barrier Anatomy
Nucleotidases
Oxalyldiaminopropionic acid
Abnormal Degeneration
Propionic acid
CA9 gene
Adenosine Triphosphatases

Related Feeds

Blood Brain Barrier

The blood brain barrier is a border that separates blood from cerebrospinal fluid. Discover the latest search on this highly selective semipermeable membrane here.

Blood Brain Barrier Chips

The blood brain barrier (BBB) is comprised of endothelial cells that regulate the influx and outflux of plasma concentrations. Lab-on-a-chip devices allow scientists to model diseases and mechanisms such as the passage of therapeutic antibodies across the BBB. Discover the latest research on BBB chips here.